
A PARADIGMATIC COMPARISION OF SORTING ALGORITHMS ON
INTEGER ARRAYS

Adigun Adebisi. A

Department of Computer Science and Engineering
LadokeAkintola University of Technology (LAUTECH)

Ogbomosho, Nigeria

Asani Emmanuel O.
Department of Computer Science

Landmark University, Omuaran, Nigeria.
asani.emmanuel@lmu.edu.ng

Adegun Adekanmi A.

Department of Computer Science
Landmark University, Omuaran, Nigeria.

adegun.adekanmi@lmu.edu.ng

Mfoniso Edet A.
Department of Computer Science

Landmark University, Omuaran, Nigeria

ABSTRACT

Sorting algorithms are used very often by computer applications owing to their relative importance in ordering data
in ways that can be easily manipulated. It is one area of computing that has received much attention, and this is due
to its wide application as a preliminary to many other computer operations. This study provides a comparative
complexity study of three popular sorting algorithms (Radix sort, Quick sort and Bubble sort). These algorithms
have been in use for a long time and continue to elicit research interest from researchers. However, the question of
“which and when to use?” remains. Each of these algorithm solves the sorting problem in dynamic ways. The aim of
the study is to analyse the working complexities of these three sorting algorithms and compare them to determine
their performance over different test cases and programming paradigms.

Keywords – Bubble sort, quick sort, radix sort, time complexity and performance metrics.

1. INTRODUCTION
In computing, sorting is the arrangement of the elements of a list in a given order. Sorting is often done either in
numerical or lexicographical order. Sorting is fundamental to computer science because data can be handled more
efficiently when sorted than in a randomized way [1]. A particular sorting algorithm is considered to be efficient if it
uses computer resources such as memory, CPU time and disk usage in an effective manner. The effectiveness here
implies that, given a particular size of inputs, how fast does it take (CPU time) to sort the inputs in a particular order
(time efficiency) or how much of memory space does the algorithm consume to sort the inputs (space efficiency). In
order to find the efficiency of each of these sorting algorithms, we carry out a complexity analysis of each of
algorithm first, then we compare.

2. WORKING PROCEDURE OF THE SORTING ALGORITHMS

A. QUICK SORT:

The Quick sort algorithm uses the divide and conquer strategy and works recursively until all the elements are
sorted. This is based on the philosophy that small lists are easier to sort than long ones. It works by choosing an
element as a pivot and then making a recursive call to the quicksort algorithm to sort the elements on both sides.
After sorting the smaller partitions, they are all combined together to have a sorted form of the original array. So
typically, the quick sort has three basic subroutines vis divide, conquer and combine as described below.

a. Divide: Given an array A [p….s] such that p <= s-1, the divide subroutine re-arranges the array into two
non-empty sub arrays A[p….q] and A[q+1....s] such that each element of sub array A[p….q] is less than or
equal to each element of sub array A[q+1….r]. The index of q is outputted as part of this partitioning
procedure.

b. Conquer: The 2 sub arrays A[p….q] and A[q+1….r] are further partitioned by recursive calls till the
resulting sub-arrays become too small to sort by comparison.

c. Combine: Since the sub arrays are sorted in place, we then combine them (the sorted sub-arrays to produce
the sorted elements of array A[p…s].

For instance:
Consider a list of 11 values:
2 6 11 5 8 4 9 3 10 1 7
Fig 1 illustrates the quicksort process

If 7 is chosen as the pivot element, then all values less than 7 will be taken to the left of 7 and all values greater than
7 will be taken to the right of 7. This recursive process continues until a sorted list is achieved for the minutest
division. Finally the algorithm combines.

Fig 1: Quick sort process

Algorithm: Given an array A of [1-N] elements[2]

The implementation is below [2]

QUICK (A,p,r)
1. If p>=r then return
// q is the pivot
2. q = PARTITION(A,p,r)
// after ‘partition’
// A[left..q-1] ≤ A[q] ≤ A[q+1..right]
3. QUICK(A,p,q-1)
4. QUICK(A,q+1,r)
5. Exit

The subroutine PARTITION() is used to scan the array and then send all elements less than the pivot to the left and
all elements greater than the pivot is moved to the right. Quick sort depends largely on this routine to partition the
unsorted array into two sub lists at every stage of the sorting process with reference to the pivot element.

It is defined as follows:
PARTITION (A, p, r)
1. X = A[r]
2. I = p -1
3. For j = p to r-1 do

i. If A[j] <= x then
ii. i = i+1

iii. Exchange A[i] and A[j]
iv. END IF

4. Exchange A[i+1] and A[r]
5. Return i+1
6. END FOR LOOP
7. Exit

Quicksort Analysis
To analyse quick sort algorithm, we shall assume that the pivot chosen divides the array into two sizes of k and n-k.
The running time of quicksort depends on whether the partitioning is balanced or unbalanced,and this in turn
depends on which elements are used for partitioning. If the partitioning is balanced, the algorithm runs
asymptotically as fast as merge sort. If the partitioning is unbalanced, however, it can run asymptotically as slowly
as insertion sort. [3]

Best Case
The best case of quicksort occurs when the pivot chosen divides the array into two equal parts in every step. Thus
we have k = n/2 and n-k = n/2 for the original array of size n.[4][3]
The total runtime can be written as follows:
T (n) = 2T (n/2) + αn ……………eqn.1

Substituting n/2 for n in eqn.1
= T (n/2) = 2(2T (n/4) + αn/2) + αn
= 22T (n/4) + 2αn
= 22(2T (n/8) + αn/4) + 2αn
= 22T (n/8) + 3αn
= 2kT (n/2k) + 3αk (continuing to the kth step)………..eqn.2

Observing the above equation, it can be noted that the recursion will continue until n = 2k. This is because when n =
2k, n/2k = 0. Therefore the recursion will continue until k = log n.

Hence, we substitute log n for k in eqn.2
T (n) = nT(1) + αnlogn
=O (n log n)

Worst Case Analysis
The worst case scenario occurs when the pivot chosen is the least element in the array. Thus we have k = 1 and n-k
= n – 1.

T (n) = T (1) + T (n-1) + αn
= T (n-2) + T (1) + α (n-1) + T (1) + αn
= T (n-2) + 2T + αn- α + αn
= T (n-2) + 2T + α (n-1+n)
= T (n-3) + T (1) + α (n-2) + 2T + α (n-1+n)
= T (n-3) + 3T + (αn - 2 α + αn – α – αn)
= T (n-3) + 3T + α (n – 2 + n -1 – n)
= T (n – 4) + T (1) + α (n-3) + 3T + α (n – 2 + n – 1 – n)
= T (n – 4) + 4T + (αn - 3 α + αn - 2α + αn – α – αn)
= T (n – 4) + 4T + α (n – 3 + n – 2 + n – 1 – n)

= T (n – i) + I T (1) + α (n – i + 1 ….. + n – 2 + n – 1 + n)

= 𝑇 𝑛 − 1 + 𝑖	𝑇 1 +	∝ (𝑛 − 𝑗)
-./

012

	

Observing the above recurrence, it will be noted that n – i will be less than one when i = n – 1, hence, we substitute
n – 1 for i in the above equation.

𝑇 1 + 𝑛 − 1 	𝑇 1 +	∝ (𝑛 − 𝑗)
3.4

012

= 𝑛𝑇	 1 + 𝑛 𝑛 − 1 𝑇 1 +	∝ 𝑗
3.4

012

But 𝑗3.4
012 𝑗 = (𝑛 − 2)(𝑛 − 1)/23.4

01/
= 𝑛𝑇	 1 + 𝑛 𝑛 − 1 	𝑇	 1 − (𝑛 − 2)(𝑛 − 1)/2
= O (n2)

Average Case Analysis

𝑇 𝑛 ≤ 	
2
𝑛

𝑎𝑖 log 𝑖 + 𝑏 + 𝑑𝑛
3./

-1/

	

≤
2
𝑛
	(𝑎𝑖𝑙𝑜𝑔	𝑖) + 2𝑏 + 𝑑𝑛
3./

-1/

	

=
2
𝑛

𝑎𝑖 log 𝑖 + 			 (𝑎𝑖 log 𝑖) 	+ 2𝑏 + 𝑑𝑛
3./

-13 4A/

3
4

-1/

	

≤ 	
2
𝑛

𝑎𝑖 log(

3
4

-1/

𝑛
2) 	+ 	 𝑎𝑖 log 𝑛

3./

-13 4A/

+ 	2𝑏 + 𝑑𝑛	

=
2
𝑛

𝑎𝑖 log 𝑛
3./

-1/

− 	 𝑎𝑖

3
4

-1/

+ 	2𝑏 + 𝑑𝑛	

=
2
𝑛

𝑛(𝑛 − 1)
2

𝑎𝑙𝑜𝑔𝑛 −	
𝑛 2 𝑛 2 + 1

2
(𝑎) + 2𝑏 + 𝑑𝑛	

≤ 𝑎 𝑛 − 1 log 𝑛 −	
𝑛
4
𝑎 + 2𝑏 + 𝑑𝑛	

= 𝑎𝑛	𝑙𝑜𝑔𝑛 + 𝑏 −	
𝑛
4
𝑎 + 𝑏 + 𝑑𝑛	

≤ 𝑎𝑛 log 𝑛 + 𝑏	𝑓𝑜𝑟	𝑎 > 4(𝑏 + 𝑑)	
=	O	(nlogn)	

B. BUBBLE SORT
Bubble sort algorithm is the simplest and most used of all the sorting algorithm. It is a comparison based algorithm
whereby each element is compared with the next element and their position altered accordingly.

Bubble sort works by comparing every item in the list to the next item, and if the first item is larger than the second,
then they are exchanged.

If we were to bubble sort the list below:

4 2 3 1

1st Iteration
4 2 3 1
Step1: Compare the first element with the second element, 2 is less than 4 and so an exchange occurs.
2 4 3 1
Step 2: The second element is then compared with the third element resulting in 3 being swapped with 4 since 4 is
greater than 3.
2 3 4 1
Step 3: The third element is then compared with the fourth element which results in the following order and
concludes the first iteration through the list.
2 3 1 4

2nd Iteration
2 3 1 4
Step 1: 2 and 3 is compared but no swap occurs since 2 is less than 3.
2 3 1 4
Step 2: 3 and 1 is compared and swapped since 3 is greater than 1.
2 1 3 4
Step 3: 3 and 4 is compared and no swap occurs. The resulting list at the end of the second iteration is
2 1 3 4

3rd Iteration
2 1 3 4
Step 1: 2 and 1 is compared and a swap occurs since 2 is greater than 1.
1 2 3 4
At this point, all elements are in their correct position and the list is sorted.

The process continues until the smallest number bubbles to the front of the list and the largest number bubbles to the
back of the list.

At the end of the sorting process, the final list will be
1 2 3 4

The algorithmic implementation is below:

Bubblesort (A: [1…n], iteration: increments on each call)
Costs Count
1. Changed = false c1 1
2. For I = 1to A.length – iteration inclusive c2 n
3. If A[i] > A[i+1] c3 n-1
4. SWAP(A,I,i+1) c4 n-1
5. Changed = true c5 n-1
6. If changed c6 1
7. Bubblesort(A, iteration+1) 1

Best Case Analysis
The best case situation is when the array is already sorted, in which case line 4,5 and 7 will never be executed. The
total runtime will therefore be:

T (n) = c1 + c2.n + c3. (n-1) + c6
T (n) = n. (c2 + c3) + c1 + c6 –c3
T (n) = O (n)

Worst Case Analysis
The worst case scenario occurs when the first element is the maximum. In this case the total runtime will be:
c1 + c2.n + (n-1). (c3 + c4 + c5) + c6 +c7

But since the line 7 reiterates several times, the equation becomes

𝑐1 + 𝑐2. 𝑛 + 𝑛 − 1 . 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 +	 (𝑛 − 1)
3

012

= 𝑛. 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐1 + 𝑐6 −	 𝑐3 + 𝑐4 + 𝑐5 +	 (𝑛 − 𝑖)
3

012

= O (n2)

C. RADIX SORT
Radix sort is a non-comparative sorting algorithm that makes use of keys to sort list of values. Keys are usually
integers and sometimes it may consider an alphabet as key for sorting strings. There are two classifications of radix
sort: Least Significant Digit (LSD) and Most Significant Digit (MSD) radix sort. The LSD first sort proceeds from
the least significant digit and moves from the right to left.
Consider a list L = {489, 358, 145, 909, 690, 820, and 527}. The number of elements on the list n = 7, the number of
digits l = 3 and radix = 10. To sort using radix sort, the algorithm will require 10 bins and the sorting will be done in
3 passes, explanation is shown in Fig. 2 below.

L = {489, 358, 145, 909, 690, 820, 527}
Pass 1
820
690

 145 527 358 909
489

 0 1 2 3 4 5 6 7 8 9

Pass 2
909 820

527
 145 358 489 690

 0 1 2 3 4 5 6 7 8 9

Pass 3
 145 358 489 527 690 820 909
 0 1 2 3 4 5 6 7 8 9
Fig. 2: Explanation of Radix sort

At the end of the third pass, the sorted list is
L= {145, 358, 489, 527, 690, 820, 909}

Radix Performance Analysis
The efficiency of radix sort is a somewhat difficult one to establish when compared to other algorithms.
Theoretically, the average runtime complexity of radix sort is O (d.n), where d is the number of digits in each
element and n is the number of elements. In practical, the efficiency of radix sort depends on the value of d.

3. EMPERICAL EXPERIMENTS AND RESULTS

The algorithms were implemented over two programming paradigms namely, Procedural and Object Oriented
Programming. C programming language was the preferred procedural language used, due to its standard library
concept, large repertoire of operators and syntax but more importantly, its ready access to hardware when needed.
Java was preferred as our Object Oriented Programming language due to its portability and large class library.

The OOP Programming paradigm
The three sorting algorithms were implemented using the java programing language. The java
system.currentTimeMillis() function was used to time the sorting process during program execution. This function
returns the current system time in milliseconds. The inbuilt java random number generating function was used to
generate random number of integers with size varying from 1000 to 100000. The data collected was the running

time of each algorithm on the different size of input used. The test were carried out five times and the average was
calculated. Results are shown in Tables and Figures below.

Table 1: Average time taken to sort different list size using different sorting algorithms in java programming
language.

 Average Time Taken in milliseconds
No. of elements Bubble Sort (Java) Quick Sort (Java) Radix Sort(Java)

1000 22 0.8 0.8
5000 78.2 1.0 1.4

10000 262.6 1.6 3.6
20000 966.6 3.2 5.4
30000 2101.6 4.6 6.2
40000 3714.2 5.2 8.8
50000 5722 6.6 10.6
60000 8490.6 8.0 12
70000 11805.6 8.6 13.6
80000 15323.2 10.4 15.6
90000 18745 10.6 18.2

100000 23102.2 12.2 20.2

Fig 3: Time taken to sort different list size using the different sorting algorithms in java programming language.

Table 2: Time taken to sort different list size using the different sorting algorithms in C programming language

 Average Time Taken in milliseconds
No. of elements Bubble Sort(C) Quick Sort (C) Radix Sort (C)

1000 3 0 0
5000 79 1 0.8

10000 369.6 2 1
20000 1561 3.8 3
30000 3607 5.2 4
40000 6497.4 7 5
50000 10210.2 9 6
60000 14739 10.6 7.2
70000 20176.4 12 8
80000 26364 14 9.2
90000 33538 16 11

100000 41535 17 12

0
20000
40000

AV
ER

AG
E	
TI
M
E	
(IN

	M
IL
LI
SE
CO

N
DS

)

NO	OF	ELEMENTS

Average	Time	to	Sort	Different	List	Size	in	Java

Bubble	Sort	(Java) Quick	Sort	(Java) Radix	Sort(Java)

Fig 4: Time taken to sort different list size using the different sorting algorithms in C programming language

Table 2: Average time taken to sort different list size in both C and Java programming language.

 Average Time Taken in milliseconds
No. of

elements
Bubble Sort

(Java)
Quick Sort

(Java)
Radix Sort

(Java)
Bubble Sort

(C)
Quick Sort

(C)
Radix Sort

(C)
1000 22 0.8 0.8 3 0 0
5000 78.2 1.0 1.4 79 1 0.8

10000 262.6 1.6 3.6 369.6 2 1
20000 966.6 3.2 5.4 1561 3.8 3
30000 2101.6 4.6 6.2 3607 5.2 4
40000 3714.2 5.2 8.8 6497.4 7 5
50000 5722 6.6 10.6 10210.2 9 6
60000 8490.6 8.0 12 14739 10.6 7.2
70000 11805.6 8.6 13.6 20176.4 12 8
80000 15323.2 10.4 15.6 26364 14 9.2
90000 18745 10.6 18.2 33538 16 11

100000 23102.2 12.2 20.2 41535 17 12

0
20000
40000
60000

AV
ER

AG
E	
TI
M
E	
(IN

	M
IL
LI
SE
CO

N
DS

)

NO	OF	ELEMENTS

Average	Time	to	Sort	Different	List	Size	in	C

Bubble	Sort(C) Quick	Sort	(C) Radix	Sort	(C)

Fig 5: Time taken to sort different list size using the different sorting algorithms in C and Java programming
languages

4. CONCLUSION
From the above analysis, when comparing the algorithms, it can be concluded that in a list of 1000 to 100000,
bubble sort takes more time to sort as compared to quick sort and radix across the two programming paradigms.
Quick sort, when compared to radix sort produced an almost identical performance but quickly gets better as the
input size increases. If we consider the worst case complexity of the three algorithms, then quick and radix sort gives
the result of the order of n^2. We also can infer from the analysis that sorting generally takes less time to run in
Procedural Languages than in Object Oriented Program (OOP) paradigm. The marginal exception observed in quick
sort is nullified by the performance of radix sort which is the best across the two paradigm. This explains why
Procedural Programming Paradigm produces better runtime efficiency than the OOP paradigm [5].

REFERENCES
[1]. Pooja K. C. and Jayashree S. S. (2013). Comparative Analysis & Performance of Different Sorting Algorithm

in Data Structure. International Journal of Advanced Research in Computer Science and Software Engineering
vol. 3(11). Pp500-507.

[2]. Nidhi C. and Simarjeet S. B. (2013) A Comparison based Analysis of different types of Sorting Algorithms
with their Performances. Indian Journal of Research Vol. 2(3), pp10-13.

[3]. Kamlesh K. P., Rajesh K. B. and Kamlesh K. R. (2014). A Comparative Study of Different Types of
comparison Based Sorting Algorithms in Data Structure. International Journal of Advanced Research in
Computer Science and Software Engineering, vol.4(2). Pp304-309.

[4]. Thomas H. C., Charles E. L., Ronald. L. R. and Clifford. S.(2001). Introduction to Algorithms, 2ed.
Cambridge, Massachusetts, MIT Press.

[5]. Kuan C. C. (2004). Comparison of Object-Oriented and Procedure-Based Computer Languages. Issues in
Information System. Vol 5(1) pp 70-76.

	

0
20000
40000
60000

AV
ER

AG
E	
TI
M
E	
(IN

	M
IL
LI
SE
CO

N
DS

)

NO	OF	ELEMENTS

Average	Time	to	Sort	Different	List	Size	in	C	and	Java

Bubble	Sort	(Java) Quick	Sort	(Java) Radix	Sort	(Java)

Bubble	Sort	(C) Quick	Sort	(C) Radix	Sort	(C)

